Digitally intensive DC-DC converter for extreme space environments, Phase I

Completed Technology Project (2012 - 2012)

Project Introduction

The Space Micro –Arizona State University (ASU) team will develop an all-digitally controlled, wide temperature range point-of-load switch-mode DC-DC regulator core with built-in self-test (BIST) functionality which meets space radiation requirements. In Phase I we will produce a design that can be fabricated into silicon in Phase II and demonstrate aspects of the design in the laboratory with some preexisting silicon circuits and discrete components. A competitive analysis below depicts the product advantages of our proposed device. These translate into substantial benefits to NASA in extreme temperature (and radiation) environments.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Space Micro, Inc.	Lead Organization	Industry	San Diego, California
Jet Propulsion Laboratory(JPL)	Supporting Organization	NASA Center	Pasadena, California

Primary U.S. Work Locations

California

Digitally intensive DC-DC converter for extreme space environments, Phase I

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Organizational Responsibility	
Project Management	2
Technology Maturity (TRL)	3
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Digitally intensive DC-DC converter for extreme space environments, Phase I

Completed Technology Project (2012 - 2012)

Project Transitions

February 2012: Project Start

August 2012: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/140296)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Space Micro, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Bert R Vermeire

Co-Investigator:

Bert Vermeire

Small Business Innovation Research/Small Business Tech Transfer

Digitally intensive DC-DC converter for extreme space environments, Phase I

Completed Technology Project (2012 - 2012)

Technology Areas

Primary:

- TX02 Flight Computing and Avionics
 - └─ TX02.1 Avionics
 Component Technologies

 └─ TX02.1.7 Point-of-Load
 Power Converters

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

